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This paper is devoted to the homogenization problem of a control objects all com-
ponents of mathematical description of which may depend on some small parameter
€. It is assumed that the control object is discribed by a linear elliptic equation sub-
ject to control constraints. As it is well known there is a huge amount of literature
on various aspects and methods in homogenization of partial differential equations and
operator equations in Banach spaces (see, e.g., [1-7]). While only few papers deal with
the homogenization of control systems. That’s why the aim of this paper is to study the
passing to the limit in such objects as ¢ = 0. We will try to find out what happens to
the control object as ¢ — 0, does there exist a limit, and, if so, can it be determined?
In order to do it we note that each of the control system can be characterized by its
own set of admissible pairs ”control-state”. Therefore we will study the homogeniza-
tion problem as identification of the (Painleve-Kuratowski) topological limit [8] of the
collection of sets of admissible pairs .

Let 2 be a bounded open set of R™ with Lipschitz boundary. We define the control
object as follows

—div(A.Vy)=bou+fe in Q, (1)
y=0 on 00, uwelU,. (2)

Let us denote by Wes the weak topology of H3(Q), w,, the weak topology of L*(Q2),
s,_, the strong topology of H~!(f), and let us begin with the following assumptions:

(1) {Uc}.c(0,e0) is @ family of weakly closed convex subsets of L?((2) such that there
exists a non-empty topological limit (w L,) —LmU, in the Kuratowski’s sense;
2) the sequence {f. € H™'(Q is compact with respect to the weak
EG{OJOI
topology of H~1(Q);
(8) the sequence {b. € L*°(R)}, ¢, Is compact with respect to the strong
topology of L*°(Q);
2
(4) A, € [L>=(Q)]™ for every ¢ € (0,60], and there are two positive constants

0 < Bo < By satisfying Bol¢I° < (€&, 4c€)pn < B1lE]*, ae. in Q for any
£€R™ and ¢ € (0,¢0);
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(5) boundary problem (1)—(2) is the uniformly regular, i.e. for every ¢

—div (AEVy) =beu+ fo, in 0,
Ee = (v,9) € L*() x Hy(?) y=0 on 89, # 0.
vwe U,,

It is well known that under above conditions there exists unique solution y. € Hj(f)
of original system (1) for every admissible control v € U, C L*(f2). Our aim is to
establish the sufficient conditions under which the topological limit of the sets {Z.} in
the p=w_, X Wy -topology for the product space L*(2) x H}(f2) can be recovered.

In order to do it we will use the following result.

LEMMA 1. A set E s the tological limit of the sequence

{E 5} EG(D‘_EUJ C X

in some topology T if and only if the following conditions are satisfied:

(i) for every z € E there ezist an index set H € H and a sequence {z:}, .y
converging to © in X such that z. € X, for every ¢ € H ;

(ii) if H is any indez set of H', {z.},cy is a sequence converging to z in X
such that z. € E. for every e € H, then z € E.

Here H is a filter on (0,¢0), and HY is the grill associated with the filter H, i.e.,
the family of subsets of (0,e0] that meet all sets H in H.
Let us consider the sequences of operators {A .}, (g and {Be}.c (o, such that:

(a) (Bew, )y = Jobeupdz, Yo € Hj(Q), ie. B, are linear continuous
operators from L*(Q) to H™'(Q) for every € € (0,&0];

— 1
(6) (Aew) . o = o (V9. ATVY)po de, Yy, 0 € HY(0).
Then original control system (1)—(2) can be rewritten in the form
Ay=B.au+f. in D'(Q), uwelU.. (3)

DEFINITION 1. We say that a collection of control constraints {U.} is the non-regular
if (33-1) ~LsQ. =0, where by Q. denote the images of the sets U, in H™}(Q) by
the maps F.:L*(Q) - H™}(Q). Here Fu=B.u+ f,.

By A. C L*() x H™1(Q) x H} (Q) we denote the set of all admissible triplet for the
problem (3), i.e.

(9,y) € gr(Ac) g, xmz
A. =< (u,g,y) € L*(Q) x H(Q) x Hy(Q) g= Bt (4)
veU,,

where the graph restriction gr(A¢)|g,xn2 of the operator A, is defined as the set
gr(Ac)lo. xmp =8r(A)N[Q. x Hy(Q)],
gr(Ac)={(g,y) e H'(Q) x Hy(Q)| g = Ay}

It is easy to prove the following result.
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LEMMA 2. For every € € (0,&0] there is a one-to-one correspondence between the sets
= and A..

Now it is easy to see that the problem of topological convergence of the sets
of admissible pairs {Z.} in the u-topology can be reduced to the identification
of topological limit in 7 =s__, x w_, -topology of the graph restriction sequence

o

{gr (Ae)lg, XH'%}EG i However, under our initial assumption (with respect to the
1= 0

non-regular constraints) it is not possible to recover the topological limit of this sequence
in the 7 -topology, because by virtue of the properties in the Kuratowski’s sense, we
have the following inclusion

T—Lsgr(A.) |Qr‘<Hol Cr-Lsgr(A,)N [(33-1) ~Ls Q. x Hy (Q)] =

Consequently, we should choose more weaker topology on H~(Q) x H}(Q) than the
7 -topology. With this aim we will consider this problem with respect to 7* -topology,
which is defined as the product of the weak topology for H~!({2) and the weak topology
for Hy (). To this we introduce the following hypotheses:
(A1) there exist subsets L C H™!(Q) such that Q. C L forall € € (0,¢0];
(A2) for every ¢ € (0,e0] there is a real reflexive separable Banach space Y, with
norm |||, and a continuous linear mapping P, of Y, into HJ(f2) such that:

sup ||Pe|| = ¢o < oo
€€ (0,e0]

A3) forevery € € (0,¢0] there exists a linear mapping Rt of Y into L* C H~}(Q
g It

£

such that if g € Y2, then P:(Rtg) =g for every ¢ € (0,¢0];
(A4) for every strongly converging sequence {q.} in H™'(2) we have {RTPq.}
is bounded.

Now we introduce the following concepts.

DEFINITION 2. We say that the collection of real reflezive separable Banach spaces
{Ye}ic (0. 15 coordinated with the control object (3) if hypotheses (Al1)-(A4) hold

true and there is a sequence of convez closed subsets {@e - H_I(Q)} - such that
€€(0,e0
RIP;:Q.— Q. for every €€(0,e0], and s, _, —LiQ #0, whereas s__,—-LsQ.=0.

DEFINITION 3. For control object (3) with a coordinated collection of spaces
{Yelic (0o the sets

Gr(A.)={(f,y) € H(Q) x Hy(Q) | Acy = RTP;f}

are called the prototypes of the operator graphs gr(A.).

DEFINITION 4. Suppose A. € L (H3(Q);H*(Q)) is a coercive operator. We say
that the sequence of operators {Ae €L (H(:JL(Q);H_I(Q))}ee(O o] G* -converges to the

operator A . (in symbols, A, 2y A.)if
7-LmGr(A.)=gr(A.),
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where T = 8. q X wﬂ3 :

We note that definition of the G*-limit of the operators {A .} is defined in the
terms of the product of the strong topology for H~'(Q) and the weak topology for
H; (). Moreover, if we put Y, = H}(Q), P.y=y, Rtg =g for every y € H}(Q),
g€ HY(Q),and ¢ € (0,e0],then Q. = Q. and each of the graph prototypes Gr(A.)
coinsides with the corresponding graph gr(A .). Therefore Definition 4 reduces to the
well known definition of G -convergence. Now we give the following important results.

PROPOSITION 1. Suppose that for the original control object there is a coordinated col-
lection of Banach spaces {Yc} ¢ (g, - Let Ax € L(Hg(Q); H1(Q)) be a coercive op-

erator, {Ae €L (Hé(Q);H_l (Q))}eew.eo}

and uniformly coercive operators. Then the sequence {Af}se(o,eo] G* -converges to
A, if and only if

be a G* -compact set of uniformly bounded

AT'RYPIf — A7'f weakly in H(Q)

for any f e H-1(Q).

Proof. Assume that A . Sy A « . Then, by Definition of G* -convergence, we have
A7'RTPIf — A7'f weakly in H}(Q),

and the "only if” part of the statement is proved.
Let us prove the ”if” part. Suppose that A7'RTP:f — A7'f weakly in H(Q) for
any f € H™(2). By G*-compactness of the set {Af}seto.eo] , there exists an index

-~

set H € H* and a subsequence {Ac}.cqy suchthat A.cy i A ., where A, is
a linear bounded coercive operator from H}(Q) into H~1(Q). Consequently for A .
there exists an invertible bounded operator AT!. The definition of G* -convergence
implies that A7!f = A7'f for any f € H!(Q). Therefore AT! = A7l and
A.=A..Thus A, 5 aA,.

THEOREM 1. Suppose that the following conditions hold true:

(i) {A.eL(H}(Q),H™? (Q))}ee (0.e0) 18 @ Sequence of uniformly coercive and uni-
formly bounded operators;

(ii) the collection of Banach spaces {Y,}EG(D&O] is coordinated with the original
control object (3) in the sense of Definition 2.

Then there ezist an indez set H € HY, a subsequence {Ac}.c g, and a coercive linear
operator A, of H3(Q) into H () such that A, Lk dei

T-LmGr(A,)=gr(A.).

Proof. Since the space Hj(Q) is separable and reflexive, there exists a metric d such
that for any sequence {y.} c€(0,c0) the following conditions are equivalent:

(1) ye =y weakly in H}(Q);
(2) {yf}ee{o,eo] is bounded and d(y.,y) = 0.
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We denote by o the topology associated to the metric d on Hg(f2). This topology has
a countable base. Since the topology s__, x o has a countable base, by Kuratowski
compactness theorem, there exists a subsequence {Gr (A )}, 5, where H € H', such
that the one converges to a set C C H™1(2) x H3(f2) in the s__, x o-topology.
Now we prove that C = 7—Lm Gr (A ). With this aim it is enough to show that

7—LsGr(A,.) CC, (5)

C Cr-LiGr(A,). (6)

Firstly, let us verify (5). Suppose (f,y) € 7—LsGr (A .). Then there exist an index set
H € H' and a sequence {(ﬁ,ye)} u converging to (f,y) in the topology 7 such
€€

that (]";,ys) € Gr(A.) for every ¢ € H. Since (1) implies (2), we see that (ff,y,)
converges to (f,y) with respect to the topology s, _, x o . Hence, (f,y) € C.
Now we prove (6). Let (f,y) € C. Then there exists a sequence {(fe,ye)} con-

x o such that (fs,yg) € Gr(A,) for all

¢ small enough. Since {fe} is bounded in H~!(Q2) we deduce that the sequence
ye = AT'RP:f, is bounded in H}(f) as well (by Definition 2). Then the equiv-
alence between conditions (1) and (2) yields weak convergence of {y.} to y. Hence,
{(f;,y;)} converges to (f,y) in the 7-topology, which implies (6).

e€(0,e0]

Finaly, we prove that there exists an invertible linear bounded operator A, :
Hj(Q) = F~(Q) such that C = gr(A,). Using Proposition 1, we see that there
exists a linear operator C, : H~1(Q) — Hj(Q) such that

verging to (f,y) in the topology s

H-1

Vfe H Q) ye=A'RIP:f — C.fweakly in Hj(Q).

Then by analogy with [9] (see Proposition 1.7) it can be proved that there is a constant
a > 0 such that the inequalities

I£ =3I, S allC.f - Cugll, (7

H-1 —

(f~9.C.f = Cug) 2" |IC.f = Cugll,- (8)

hold for every f,g € H™}(Q).
Therefore from (7)—(8) we deduce that for any f € H~1(Q)

IFI2- SelCufIZ,, (0. 2a™IC.AI2,. Q

H-1 —
Consequently the operator C, is invertible, i.e. we may set A, = C7'. Moreover,

we obtain for the operator A, the properties of boundedness and coerciveness taking
arbitrary y € Hj(Q) and substituting f = A,y into (9). The theorem is proved.

112



THEOREM 2. Suppose that the following conditions hold true:
{A. e L(E}Q),H())
formly bounded operators;
(i) for the original control object (3) there exists a coordinated collection of Banach
spaces {Ye}ee(o,sa] s
(iii) there are an indez set H € H and a 7 -converging sequence

{(Fove) €@oxmi@} _ such that

A= RfP:fe , forevery e€ H.

c€ (0.c0) is a sequence of uniformly coercive and uni-
+£0

Then there ezist a set H € H', and a coercive bounded linear operator A . €
L (H}(Q),H(Q)) such that A, <5 A, and

r—Lm [Gr(A<)| g, ey | = &7 (AL) (10)

(s4-1)-Lm[@.]xHE®) °
To prove this theorem we first make use the following result (see [10]).

LEMMA 3. Let X, Y be Banach spaces, 1 be the product topology for X x Y . Let
{W.} and {R.} be some sequences of n-closed convez subsets of X x Y for which
the following conditions hold:

(a) IryW, =Y for every € € (0,e0], where by IIry : X XY — Y denote the

projection operator;

(b) the sets R, have representation R, = X x C, for every € € (0,¢0];

(c) there ezist topological limits n—Lm W, and n—LmR.;

(d) n—Li (WeNR:)#0.
Then for the sequence of subsets {W.N R,g}se(0 e,] there ezists a topological limit in
the n-topology such that

n—Lm (W.NR,)=n-LmW,.Nn-LmR..

Proof. In accordance with Lemma 3 we need 1 verify conditions (a )-(d) for the sets W, =
Gr(A.) and R, = QE x Hj(S2) , where Q. are defined in Definition 2. Conditions
(a)-(b) follow immediately from initial assumptions. Since the sequence of operators
{Ac}.c (0.e0] 15 compact with respect to G* -convergence and the strong topology for

H~'(Q) has a countable base, by the Kuratowski compactness theorem [11] there exist
an index subset H € H*, aset 0 # Q C H™}(Q) , and a coercive bounded operator
A. € L(H}(Q),H () such that

7-LmGr(A.) =gr(A.),c € H;
r—Lm [(j . X Hg(n)] = [(35_1) —LmQ, x Hg(g)] .

Therefore condition (c¢) of Lemma 3 holds. Finally, condition (d) follows immediately
from supposition (iii). Hence, by Lemma 3 we have

7—Lm [Gr(Ag) '",xH&(Q)] =7-Lm (Gf(Ae) R [éf X H‘%(Q)D
=7-Lm [Gr(A.)]N [(33_1) -LmQ. x H&(Q)] .
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This implies immediately (10).

Now, turning to the original homogenization problem, we introduce the following
assumption (in addition to suppositions (1)—(5)):

(6) there exist linear mappings J, : L*(2) — L*(Q) and a family of closed subsets
{0} C L2(Q) such that
€€ (0,80)

Ue

Il

{u € L*(Q) ’u =Jv,v € f}s} for every ¢ € (0,¢€0);

(7) there exists an invertible linear operator Jo : L*(Q) — L%() such that
Je — Jo in the weak operator topology, i.e. (u,Je'v)L: — (u,Jov) _ for

2

L=

every u,v,€ L%(2), and the following inclusion holds (sz) «—Lsfj, o

Jo' [(w,,) -LmU.] , where by (w,,)-Ls U, is denoted the upper topolo-
gical limit of the sequence {f}g} :

(8) for every control sequence {u. € U.} c€(0.co] Weakly converging in L*() there

can be found a sequence of prototypes {ve € ﬁs} - satisfying the con-
€€(0.e0

ditions: u. = J.,v, for every ¢ € (0,e0] and u, — u = Jov weakly in

L?(Q) , where v € L*(®) is the weak limit of {v. € U, o
e€(0,e9

(9) for control object (3) hypotheses (A1)—(A4) hold true;
(10) for every & € (0,¢] there exist a linear continuous operator B, from L*(9)
into H7*(2) and an element f, € H~!(Q) such that:

RtpP: (ﬁ eV + j‘:) =b.Jv+ f. forevery v € 6'5;
)?5 — fo strongly in H™(Q);
B.—iBset (L*(Q); H™*(Q)) in the uniform operator topology,

=0.

L(L2(Q); H=(9))

e—0

We begin with the following result.
LEMMA 4. If assumptions (1)—(10) hold true, then

0#(s,_.)-Lm@, = {g c H™(Q) |g =BoJsu+ foVue (w,,)-LmU, } , (11)

where fo is a limit of {fe} in the strong topology of H™1() and @; are the convez
closed subsets which are defined by the rule

@e={g€H-1(Q)}g=§€v+ﬁb’v€ﬁg}. (12)
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Proof. Let g* = ﬁgJalu '+ )?0 be any element of the set
{g eH Q) |g= ﬁo.}glu +foVue (w,,)-LmU, } G
Then since u* € (w,,)-LmU,, it follows that there exist an index set H € H, a

sequence {u}}, . converging to u* in the weak topology of L*(Q2), and a sequence
of prototypes {v:}, .y weakly converging to v* in L?*(Q) such that

w*=JowleU, vieU.Vee H and u*=Jov"
Therefore, by property (10), ﬁs‘v: + f. € Q. for every e € H. At the same time we

have
HBE‘U: —Bov* ‘

<[(5.-5.)-:

+H§0(v;_v*)

<|Be-Bo||-hoill+ swp (Big,oi-v').

iIQ‘)lIHé=1

Hence
B+ f.— Bov* + fo=BoJg'u" + fo strongly in H™}(Q).

On the other hand, if H be any index set of H! and {ge £ @E} o is a sequence
€€

converging to g in the strong topology of H~(Q), then there is a sequence of control

prototypes {'v; € [Afe} % such that g. = B,v. + f. for every ¢ € H. Since the
13

sequence B v, is boundedin H™! () and the operators B. are compact with respect
to the uniform operator topology, it follows the the sequence {v.}, .z is bounded as
well. Hence we may assume that there is an element vy € (sz) —Ls ﬁe such that
ve — vo weakly in L?(2). Consequently,

g€=ﬁ£ve+fi€ Q. for every € € H;
ge — Bovo+ fo=go strongly in H™!(Q).

But by property (7) there can be found an element ug in (wbz) —LmU, satisfying

vy = Jaluo . Therefore go = ﬁgJEIuo + fo . Thus, by Lemma 1, we obtain the
required.

Now we are in a position to state the main result of our paper.

THEOREM 3. Suppose that conditions (1)—(10) hold true and there is an indez set
H € H and some p-converging sequence of admissible pairs {(uc,y:) € Ec},c gy for
original control problem (1)-(2). Then for the sequence of sets of admissible pairs
{Ee}.c (0,e0] there ezists a topological limit in the p -topology and one has the following
representation

p—LIm=E, =X, (13)



where

2 A.y=BoJs'u+ fo,
X={(u,y)eL-(n)ng(a)‘ ug( ")gL‘;U{“ }

where A, € L(H}(Q); H1(Q)) is the G* -limit of the sequence of operators {A .}
in the sense of Definition 4.

Proof. First of all we note that by initial assumptions there is some sequence of admis-
sible pair {(ve,ye) € Ze},ep such that (ue,y) — (u®,3°). However, by property

(8) there can be found a sequence of control prototypes {vg € 65} 0. satisfying
e€(0.e0
the conditions: u. = J.v. for every ¢ € (0,60] and v, — u® = Jov® weakly in
L*(Q), where v° € L%(Q) is the weak limit of {ve € [7,} — Therefore in view
eE€(0,e0

of condition (10) instead of the original sequence of admissible pairs we may consider

the sequence of their prototypes {(v;,ye) S g;} = where the sets =, are defined
€€

by the rule

[

A.y=RtP; ( £v+f€) }

= {(v,y) € L*(Q) x Hy(Q)
v E Ue.

Consequently, by Lemma 4 and condition (8), we have
@5 3 ﬁeve + fe — ﬁoJaluo + fo € (33—1) —Lm@e strongly in H*l(ﬂ),

i.e. all suppositions on Theorem 2 hold true. Therefore for the topological limit of

prototype graph restrictions [Gr (A,) 3. x Ho‘(m] representation (10) holds.

Let (z*,7*) be any pair of X. Then, by Lemma 4, we have
§*=BoJ5'a" + fo € (s,.,) -LmQ.,
where the sets @E are defined in (12). Using Theorem 2 we deduce that
@"3") € e (A0 (s,-.) ~Lm Qe x H3(2)].

Here A . isthe G* -limit of the operators sequence {A .}, o) - Then in accordance
with Theorem 2 we obtain

(°.7") € T-LmGr(A)N [(s,,) ~LmQ . x H}(Q)]

= r—Lm [Gr(Ae) 3. Hatm]'

Therefore, by properties of topological limits (see Lemma 1), there exist an index set
H € H, and sequences {¥e},cpy» {Ue}.cp>and {¥:},cy suchthat

e —7Y* weakly in  Hg(Q),

.59 ~5%" weakly in  L%(9),

Uen J3: =8, W' =Jp8" weakly in L*(Q),
Qeagg—.Beve+f,—)BoJ'1“‘+fg-— * stronglyin H™!(Q),
Aalfe=RIP2G =08+ Fk for every €€ H.
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Thus for the pair (Z*,7*) we have found the insex set H € H- and constructed the
sequence {(U,¥e)}.cy such that

~ % A~

(TerYe) s (u*,¥*) and (U,,Ye) € E, for every € € H,

i.e. condition (i) of Lemma 1 holds.

Now we consider any index set H of H'. Let {(¥.,¥)},cy be a sequence p-
converging to some pair (u,y) such that (Z.,7.) € =, for every ¢ € H. We have to
show that (u,y) € X. Indeed, in this case there can be found a sequence of prototypes
{c}.cy weakly converging to v in L*(f2) such that

te=J V. €U,, 7. eﬁg Ve€e H and u= Jov.
Consequently,

Ge=B.o.+f. — BoJg'u+ fo=5o stronglyin H}(Q),
Fe= ARt PG, — vy weakly in HJ (),

and by virtue of Theorem 2 we have

(G0,y) € gr(A.)

(33_1)-—Lm G xHXQ) *
Therefore y = A7'go = A7? (ﬁ oJgtu + J?o) , i.e. we have the following inclusion

(u,y) € X.

Thus, using Lemma 1, we deduce that the set X is the topological limit of the sequence

of sets of admissible pairs {Z.}, (0.eo] - The proof is complete.

We have proved that under initial assumptions (1)—(10) there exists the homogenized
control object for (1)—(2) and this one can be presented in the following form:

A.y=BoJj'u+fo in D'(Q),
u € (sz) -Lm U,.

In conclusion we give the example which shows that in the genaral case the G * -limit
A, of the operators {A .} may not coincide with G-limit Ao of such a sequence.
Let ©Q be an open bounded domain of R™, and let {Q.} c€(0,c0] be a sequence of
open domains of R"™ which are contained in 2. Let {A.}, e D€ a sequence of
linear uniformly coercive and uniformly bounded operators from H}(2) into H~1(Q).
For every ¢ € (0,&0] we put
(i) L* be the closure in H~!(02) of the set of all functions f € C*=(f2) with
supp f contained in 2. ;

(i) Y= Hg(Q);

(i) Pe: H}(e) = H3(2) be the extention operator defined for every y € H} (Q.)
by (Pey)la, =Y, (Pey)lgq, = 0. Since P, is linear continuous operator,
the conjugate operator P} : H™'(Q2) - H™1(Q,) is defined;

(iv) Rt :HY(Q.) —» (L* C H™'(Q)) be the extention operator defined for every
- H—l(ﬂs) by (R?f) |n‘ =f, (Rty) |n\n‘ =0.
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Assume that Kovalevsky’s hypothesis holds: each of operators {Ae}se(o.eol has the
following representation

At =P AT P,
where A, € L(Y.;Y?) are some invertible operators and if y € C§°(€2) then there
exist a constant v > 0 and a sequence {y. € Kf}ee(o._eo] such that y. — y weakly in

H} () and such that, for every closed cube S C Q,

limsupf |Vy.|*dz < Vf (1Vyl? +y2) dz,
e—0 s S

where by K. we denote the closure in Hj(f2) of the set of all functions y € C >®(Q)
with suppy contained in ..

Then A, 2 A, if and only if
AJ'RIP!f=[PAJ'P])RIPf =P A;'Plf — AT'f weakly in H}(Q)

for every f € H™1(Q).
Therefore in view of Kovalevsky’s theorem (see [11]) we deduce that for the G * -limit
operator A, the following representation holds:

A¥:A0+Fn,

where A is the G-limit of {A E}eeto,eo] in the usual sense, and the operator F), :
Hj () - H™1(Q) is defined by

(Fuy,2) = /Q K(z)yz dz.
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