ON THE HOMOGENIZATION OF CONTROL SYSTEM WITH NON-REGULAR CONSTRAINTS

© P.I. Kogut

Dnipropetrovsk, Ukraine

This paper is devoted to the homogenization problem of a control objects all components of mathematical description of which may depend on some small parameter ε . It is assumed that the control object is discribed by a linear elliptic equation subject to control constraints. As it is well known there is a huge amount of literature on various aspects and methods in homogenization of partial differential equations and operator equations in Banach spaces (see, e.g., [1-7]). While only few papers deal with the homogenization of control systems. That's why the aim of this paper is to study the passing to the limit in such objects as $\varepsilon \to 0$. We will try to find out what happens to the control object as $\varepsilon \to 0$, does there exist a limit, and, if so, can it be determined? In order to do it we note that each of the control system can be characterized by its own set of admissible pairs "control-state". Therefore we will study the homogenization problem as identification of the (Painleve-Kuratowski) topological limit [8] of the collection of sets of admissible pairs .

Let Ω be a bounded open set of \mathbb{R}^n with Lipschitz boundary. We define the control object as follows

$$-\operatorname{div}\left(A_{\varepsilon}\nabla y\right) = b_{\varepsilon}u + f_{\varepsilon} \quad \text{in } \Omega, \tag{1}$$

$$y = 0$$
 on $\partial \Omega$, $u \in U_{\varepsilon}$. (2)

Let us denote by $w_{H_0^1}$ the weak topology of $H_0^1(\Omega)$, w_{L^2} the weak topology of $L^2(\Omega)$, $s_{H^{-1}}$ the strong topology of $H^{-1}(\Omega)$, and let us begin with the following assumptions:

- (1) $\{U_{\varepsilon}\}_{{\varepsilon}\in(0,{\varepsilon}_0]}$ is a family of weakly closed convex subsets of $L^2(\Omega)$ such that there exists a non-empty topological limit (w_{L^2}) -Lm U_{ε} in the Kuratowski's sense;
- (2) the sequence $\{f_{\varepsilon} \in H^{-1}(\Omega)\}_{\varepsilon \in (0,\varepsilon_0]}$ is compact with respect to the weak topology of $H^{-1}(\Omega)$;
- (3) the sequence $\{b_{\epsilon} \in L^{\infty}(\Omega)\}_{\epsilon \in (0,\epsilon_0]}$ is compact with respect to the strong topology of $L^{\infty}(\Omega)$;
- (4) $A_{\varepsilon} \in [L^{\infty}(\Omega)]^{n^2}$ for every $\varepsilon \in (0, \varepsilon_0]$, and there are two positive constants $0 < \beta_0 \le \beta_1$ satisfying $\beta_0 |\xi|^2 \le (\xi, A_{\varepsilon} \xi)_{R^n} \le \beta_1 |\xi|^2$, a.e. in Ω for any $\xi \in R^n$ and $\varepsilon \in (0, \varepsilon_0]$;

(5) boundary problem (1)-(2) is the uniformly regular, i.e. for every ε

$$\Xi_{\,\epsilon} = \left\{ (u,y) \in \, L^2(\Omega) \times H^1_0(\Omega) \, \middle| \, \begin{array}{c} -\mathrm{div} \left(A_{\,\epsilon} \nabla y \right) = b_{\epsilon} u + f_{\epsilon}, \ \, \mathrm{in} \ \, \Omega, \\ y = 0 \quad \, \mathrm{on} \ \, \partial \Omega, \\ u \in \, U_{\,\epsilon} \,, \end{array} \right\} \neq \emptyset.$$

It is well known that under above conditions there exists unique solution $y_{\varepsilon} \in H^1_0(\Omega)$ of original system (1) for every admissible control $u \in U_{\varepsilon} \subset L^2(\Omega)$. Our aim is to establish the sufficient conditions under which the topological limit of the sets $\{\Xi_{\varepsilon}\}$ in the $\mu = w_{L^2} \times w_{H^1_0}$ -topology for the product space $L^2(\Omega) \times H^1_0(\Omega)$ can be recovered. In order to do it we will use the following result.

LEMMA 1. A set E is the tological limit of the sequence

$${E_{\varepsilon}}_{\varepsilon\in(0,\varepsilon_0]}\subset X$$

in some topology τ if and only if the following conditions are satisfied:

- (i) for every $x \in E$ there exist an index set $H \in \mathbf{H}$ and a sequence $\{x_{\varepsilon}\}_{{\varepsilon} \in H}$ converging to x in X such that $x_{\varepsilon} \in X_{\varepsilon}$ for every ${\varepsilon} \in H$;
- (ii) if H is any index set of \mathbf{H}^{\sharp} , $\{x_{\varepsilon}\}_{{\varepsilon}\in H}$ is a sequence converging to x in X such that $x_{\varepsilon}\in E_{\varepsilon}$ for every ${\varepsilon}\in H$, then $x\in E$.

Here **H** is a filter on $(0, \varepsilon_0]$, and \mathbf{H}^{\sharp} is the grill associated with the filter **H**, i.e., the family of subsets of $(0, \varepsilon_0]$ that meet all sets H in **H**.

Let us consider the sequences of operators $\{\mathbf{A}_{\varepsilon}\}_{\varepsilon \in (0,\varepsilon_0]}$ and $\{\mathbf{B}_{\varepsilon}\}_{\varepsilon \in (0,\varepsilon_0]}$ such that:

- (a) $\langle \mathbf{B}_{\varepsilon} u, \varphi \rangle_{H^1_0(\Omega)} = \int_{\Omega} b_{\varepsilon} u \, \varphi \, dx$, $\forall \, \varphi \in H^1_0(\Omega)$, i.e. \mathbf{B}_{ε} are linear continuous operators from $L^2(\Omega)$ to $H^{-1}(\Omega)$ for every $\varepsilon \in (0, \varepsilon_0]$;
- (b) $\left\langle \mathbf{A}_{\epsilon}y,\varphi\right\rangle _{H_{0}^{1}(\Omega)}=\int_{\Omega}\left(\nabla\varphi,A_{\epsilon}\nabla y\right)_{R^{n}}dx\,,\;\forall\,y,\varphi\in\,H_{0}^{1}(\Omega)\,.$

Then original control system (1)-(2) can be rewritten in the form

$$\mathbf{A}_{\varepsilon}y = \mathbf{B}_{\varepsilon}u + f_{\varepsilon} \quad \text{in} \quad D'(\Omega), \quad u \in U_{\varepsilon}. \tag{3}$$

Definition 1. We say that a collection of control constraints $\{U_{\varepsilon}\}$ is the non-regular if $(s_{H^{-1}})$ -Ls $Q_{\varepsilon} = \emptyset$, where by Q_{ε} denote the images of the sets U_{ε} in $H^{-1}(\Omega)$ by the maps $F_{\varepsilon}: L^2(\Omega) \to H^{-1}(\Omega)$. Here $F_{\varepsilon}u = \mathbf{B}_{\varepsilon}u + f_{\varepsilon}$.

By $\Lambda_{\varepsilon} \subset L^2(\Omega) \times H^{-1}(\Omega) \times H^1_0(\Omega)$ we denote the set of all admissible triplet for the problem (3), i.e.

$$\Lambda_{\varepsilon} = \left\{ (u, g, y) \in L^{2}(\Omega) \times H^{-1}(\Omega) \times H_{0}^{1}(\Omega) \middle| \begin{array}{c} (g, y) \in \operatorname{gr}(\mathbf{A}_{\varepsilon}) |_{Q_{\varepsilon} \times H_{0}^{1}}, \\ g = \mathbf{B}_{\varepsilon} u + f_{\varepsilon}, \\ u \in U_{\varepsilon}, \end{array} \right\}$$
(4)

where the graph restriction $\operatorname{gr}(\mathbf{A}_{\varepsilon})|_{Q_{\varepsilon} \times H_0^1}$ of the operator \mathbf{A}_{ε} is defined as the set

$$\operatorname{gr}(\mathbf{A}_{\varepsilon})|_{Q_{\varepsilon} \times H_0^1} = \operatorname{gr}(\mathbf{A}_{\varepsilon}) \cap \left[Q_{\varepsilon} \times H_0^1(\Omega)\right],$$

$$\operatorname{gr}(\mathbf{A}_{\varepsilon}) = \{(g,y) \in H^{-1}(\Omega) \times H^1_0(\Omega) \mid g = \mathbf{A}_{\varepsilon}y\}.$$

It is easy to prove the following result.

LEMMA 2. For every $\varepsilon \in (0, \varepsilon_0]$ there is a one-to-one correspondence between the sets Ξ_{ε} and Λ_{ε} .

Now it is easy to see that the problem of topological convergence of the sets of admissible pairs $\{\Xi_{\varepsilon}\}$ in the μ -topology can be reduced to the identification of topological limit in $\tau = s_{H^{-1}} \times w_{H^1_0}$ -topology of the graph restriction sequence $\left\{\operatorname{gr}\left(\mathbf{A}_{\varepsilon}\right)|_{Q_{\varepsilon} \times H^1_0}\right\}_{\varepsilon \in (0,\varepsilon_0]}$. However, under our initial assumption (with respect to the non-regular constraints) it is not possible to recover the topological limit of this sequence in the τ -topology, because by virtue of the properties in the Kuratowski's sense, we have the following inclusion

$$\tau - \operatorname{Ls}\operatorname{gr}\left(\mathbf{A}_{\varepsilon}\right)|_{Q_{\varepsilon} \times H_{0}^{1}} \subseteq \tau - \operatorname{Ls}\operatorname{gr}\left(\mathbf{A}_{\varepsilon}\right) \cap \left[\left(s_{H^{-1}}\right) - \operatorname{Ls}Q_{\varepsilon} \times H_{0}^{1}(\Omega)\right] = \emptyset.$$

Consequently, we should choose more weaker topology on $H^{-1}(\Omega) \times H^1_0(\Omega)$ than the τ -topology. With this aim we will consider this problem with respect to τ^* -topology, which is defined as the product of the weak topology for $H^{-1}(\Omega)$ and the weak topology for $H^1_0(\Omega)$. To this we introduce the following hypotheses:

- (A1) there exist subsets $L^{\epsilon} \subset H^{-1}(\Omega)$ such that $Q_{\epsilon} \subseteq L^{\epsilon}$ for all $\epsilon \in (0, \epsilon_0]$;
- (A2) for every $\varepsilon \in (0, \varepsilon_0]$ there is a real reflexive separable Banach space Y_{ε} with norm $\|\cdot\|_{\varepsilon}$ and a continuous linear mapping P_{ε} of Y_{ε} into $H_0^1(\Omega)$ such that:

$$\sup_{\varepsilon \in (0,\varepsilon_0]} \|P_\varepsilon\| = c_0 < \infty;$$

- (A3) for every $\varepsilon \in (0, \varepsilon_0]$ there exists a linear mapping R_{ε}^+ of Y_{ε}^* into $L^{\varepsilon} \subset H^{-1}(\Omega)$ such that if $g \in Y_{\varepsilon}^*$, then $P_{\varepsilon}^*(R_{\varepsilon}^+g) = g$ for every $\varepsilon \in (0, \varepsilon_0]$;
- (A4) for every strongly converging sequence $\{q_{\varepsilon}\}$ in $H^{-1}(\Omega)$ we have $\{R_{\varepsilon}^{+}P_{\varepsilon}^{*}q_{\varepsilon}\}$ is bounded.

Now we introduce the following concepts.

DEFINITION 2. We say that the collection of real reflexive separable Banach spaces $\{Y_{\varepsilon}\}_{\varepsilon\in(0,\varepsilon_0]}$ is coordinated with the control object (3) if hypotheses (A1)-(A4) hold true and there is a sequence of convex closed subsets $\left\{\widehat{Q}_{\varepsilon}\subseteq H^{-1}(\Omega)\right\}_{\varepsilon\in(0,\varepsilon_0]}$ such that $R_{\varepsilon}^+P_{\varepsilon}^*:\widehat{Q}_{\varepsilon}\to Q_{\varepsilon}$ for every $\varepsilon\in(0,\varepsilon_0]$, and $s_{H^{-1}}-\mathrm{Li}\,\widehat{Q}_{\varepsilon}\neq\emptyset$, whereas $s_{H^{-1}}-\mathrm{Ls}\,Q_{\varepsilon}=\emptyset$. Definition 3. For control object (3) with a coordinated collection of spaces $\{Y_{\varepsilon}\}_{\varepsilon\in(0,\varepsilon_0]}$ the sets

$$\operatorname{Gr}\left(\mathbf{A}_{\varepsilon}\right)=\left\{(f,y)\in H^{-1}(\Omega)\times H^{1}_{0}(\Omega)\mid \mathbf{A}_{\varepsilon}y=R_{\varepsilon}^{+}P_{\varepsilon}^{*}f\right\}$$

are called the prototypes of the operator graphs $\operatorname{gr}\left(\mathbf{A}_{\varepsilon}\right)$.

DEFINITION 4. Suppose $\mathbf{A}_* \in L\left(H_0^1(\Omega); H^{-1}(\Omega)\right)$ is a coercive operator. We say that the sequence of operators $\left\{\mathbf{A}_{\varepsilon} \in L\left(H_0^1(\Omega); H^{-1}(\Omega)\right)\right\}_{\varepsilon \in (0, \varepsilon_0]}$ G^* -converges to the operator \mathbf{A}_* (in symbols, $\mathbf{A}_{\varepsilon} \xrightarrow{G^*} \mathbf{A}_*$), if

$$\tau$$
-Lm Gr (\mathbf{A}_{ε}) = gr (\mathbf{A}_{\star}),

where $\tau = s_{H^{-1}} \times w_{H_0^1}$.

We note that definition of the G^* -limit of the operators $\{\mathbf{A}_{\varepsilon}\}$ is defined in the terms of the product of the strong topology for $H^{-1}(\Omega)$ and the weak topology for $H^1_0(\Omega)$. Moreover, if we put $Y_{\varepsilon} = H^1_0(\Omega)$, $P_{\varepsilon}y = y$, $R^+_{\varepsilon}g = g$ for every $y \in H^1_0(\Omega)$, $g \in H^{-1}(\Omega)$, and $\varepsilon \in (0, \varepsilon_0]$, then $\widehat{Q}_{\varepsilon} = Q_{\varepsilon}$ and each of the graph prototypes $\operatorname{Gr}(\mathbf{A}_{\varepsilon})$ coinsides with the corresponding graph $\operatorname{gr}(\mathbf{A}_{\varepsilon})$. Therefore Definition 4 reduces to the well known definition of G-convergence. Now we give the following important results.

PROPOSITION 1. Suppose that for the original control object there is a coordinated collection of Banach spaces $\{Y_{\varepsilon}\}_{\varepsilon\in(0,\varepsilon_0]}$. Let $\mathbf{A}_{*}\in L\left(H_0^1(\Omega);H^{-1}(\Omega)\right)$ be a coercive operator, $\left\{\mathbf{A}_{\varepsilon}\in L\left(H_0^1(\Omega);H^{-1}(\Omega)\right)\right\}_{\varepsilon\in(0,\varepsilon_0]}$ be a G^* -compact set of uniformly bounded and uniformly coercive operators. Then the sequence $\left\{\mathbf{A}_{\varepsilon}\right\}_{\varepsilon\in(0,\varepsilon_0]}$ G^* -converges to \mathbf{A}_{*} if and only if

 $\mathbf{A}_{\varepsilon}^{-1}R_{\varepsilon}^{+}P_{\varepsilon}^{*}f \longrightarrow \mathbf{A}_{*}^{-1}f$ weakly in $H_{0}^{1}(\Omega)$

for any $f \in H^{-1}(\Omega)$.

Proof. Assume that $\mathbf{A}_{\varepsilon} \xrightarrow{G^{\bullet}} \mathbf{A}_{*}$. Then, by Definition of G^{*} -convergence, we have

$$\mathbf{A}_{\varepsilon}^{-1} R_{\varepsilon}^{+} P_{\varepsilon}^{*} f \longrightarrow \mathbf{A}_{*}^{-1} f$$
 weakly in $H_{0}^{1}(\Omega)$,

and the "only if" part of the statement is proved.

Let us prove the "if" part. Suppose that $\mathbf{A}_{\varepsilon}^{-1}R_{\varepsilon}^{+}P_{\varepsilon}^{*}f \longrightarrow \mathbf{A}_{\star}^{-1}f$ weakly in $H_{0}^{1}(\Omega)$ for any $f \in H^{-1}(\Omega)$. By G^{*} -compactness of the set $\{\mathbf{A}_{\varepsilon}\}_{\varepsilon \in (0,\varepsilon_{0}]}$, there exists an index set $H \in \mathbf{H}^{\sharp}$ and a subsequence $\{\mathbf{A}_{\varepsilon}\}_{\varepsilon \in H}$ such that $\mathbf{A}_{\varepsilon \in H} \xrightarrow{G^{*}} \widehat{\mathbf{A}}_{\star}$, where $\widehat{\mathbf{A}}_{\star}$ is a linear bounded coercive operator from $H_{0}^{1}(\Omega)$ into $H^{-1}(\Omega)$. Consequently for $\widehat{\mathbf{A}}_{\star}$ there exists an invertible bounded operator $\widehat{\mathbf{A}}_{\star}^{-1}$. The definition of G^{*} -convergence implies that $\widehat{\mathbf{A}}_{\star}^{-1}f = \mathbf{A}_{\star}^{-1}f$ for any $f \in H^{-1}(\Omega)$. Therefore $\widehat{\mathbf{A}}_{\star}^{-1} = \mathbf{A}_{\star}^{-1}$, and $\widehat{\mathbf{A}}_{\star} = \mathbf{A}_{\star}$. Thus $\mathbf{A}_{\varepsilon} \xrightarrow{G^{*}} \mathbf{A}_{\star}$.

THEOREM 1. Suppose that the following conditions hold true:

- (i) $\left\{\mathbf{A}_{\varepsilon} \in L\left(H_0^1(\Omega), H^{-1}(\Omega)\right)\right\}_{\varepsilon \in (0, \varepsilon_0]}$ is a sequence of uniformly coercive and uniformly bounded operators;
- (ii) the collection of Banach spaces $\{Y_{\varepsilon}\}_{{\varepsilon} \in (0,{\varepsilon}_0]}$ is coordinated with the original control object (3) in the sense of Definition 2.

Then there exist an index set $H \in \mathbf{H}^{\sharp}$, a subsequence $\{\mathbf{A}_{\varepsilon}\}_{\varepsilon \in H}$, and a coercive linear operator \mathbf{A}_{\star} of $H_0^1(\Omega)$ into $H^{-1}(\Omega)$ such that $\mathbf{A}_{\varepsilon} \xrightarrow{G^{\star}} \mathbf{A}_{\star}$, i.e.

$$\tau - \operatorname{Lm} \operatorname{Gr} \left(\mathbf{A}_{\, \epsilon} \right) = \operatorname{gr} \left(\mathbf{A}_{\, *} \right).$$

Proof. Since the space $H^1_0(\Omega)$ is separable and reflexive, there exists a metric d such that for any sequence $\{y_{\varepsilon}\}_{{\varepsilon}\in(0,{\varepsilon}_0]}$ the following conditions are equivalent:

(1) $y_{\varepsilon} \to y$ weakly in $H_0^1(\Omega)$;

(2) $\{y_{\varepsilon}\}_{\varepsilon\in(0,\varepsilon_0]}$ is bounded and $d(y_{\varepsilon},y)\to 0$.

We denote by σ the topology associated to the metric d on $H^1_0(\Omega)$. This topology has a countable base. Since the topology $s_{H^{-1}} \times \sigma$ has a countable base, by Kuratowski compactness theorem, there exists a subsequence $\{\operatorname{Gr}(\mathbf{A}_{\varepsilon})\}_{\varepsilon \in H}$, where $H \in \mathbf{H}^{\sharp}$, such that the one converges to a set $C \subset H^{-1}(\Omega) \times H^1_0(\Omega)$ in the $s_{H^{-1}} \times \sigma$ -topology.

Now we prove that $C = \tau - \text{Lm} \operatorname{Gr}(\mathbf{A}_{\epsilon})$. With this aim it is enough to show that

$$\tau - \operatorname{Ls} \operatorname{Gr} \left(\mathbf{A}_{\varepsilon} \right) \subseteq C, \tag{5}$$

$$C \subseteq \tau - \operatorname{Li} \operatorname{Gr} \left(\mathbf{A}_{\varepsilon} \right). \tag{6}$$

Firstly, let us verify (5). Suppose $(f,y) \in \tau$ -Ls Gr $(\mathbf{A}_{\varepsilon})$. Then there exist an index set $H \in \mathbf{H}^{\sharp}$ and a sequence $\left\{ \left(\widehat{f}_{\varepsilon}, y_{\varepsilon} \right) \right\}_{\varepsilon \in H}$ converging to (f,y) in the topology τ such that $\left(\widehat{f}_{\varepsilon}, y_{\varepsilon} \right) \in \operatorname{Gr}(\mathbf{A}_{\varepsilon})$ for every $\varepsilon \in H$. Since (1) implies (2), we see that $\left(\widehat{f}_{\varepsilon}, y_{\varepsilon} \right)$ converges to (f,y) with respect to the topology $s_{H^{-1}} \times \sigma$. Hence, $(f,y) \in C$.

Now we prove (6). Let $(f,y) \in C$. Then there exists a sequence $\left\{ \left(\widehat{f}_{\varepsilon}, y_{\varepsilon} \right) \right\}$ converging to (f,y) in the topology $s_{H^{-1}} \times \sigma$ such that $\left(\widehat{f}_{\varepsilon}, y_{\varepsilon} \right) \in \operatorname{Gr}(\mathbf{A}_{\varepsilon})$ for all ε small enough. Since $\left\{ \widehat{f}_{\varepsilon} \right\}$ is bounded in $H^{-1}(\Omega)$ we deduce that the sequence $y_{\varepsilon} = \mathbf{A}_{\varepsilon}^{-1} R_{\varepsilon}^{+} P_{\varepsilon}^{*} \widehat{f}_{\varepsilon}$ is bounded in $H_{0}^{1}(\Omega)$ as well (by Definition 2). Then the equivalence between conditions (1) and (2) yields weak convergence of $\{y_{\varepsilon}\}$ to y. Hence, $\left\{ \left(\widehat{f}_{\varepsilon}, y_{\varepsilon} \right) \right\}_{\varepsilon \in (0, \varepsilon_{0}]}$ converges to (f, y) in the τ -topology, which implies (6).

Finaly, we prove that there exists an invertible linear bounded operator A_* : $H_0^1(\Omega) \to H^{-1}(\Omega)$ such that $C = \operatorname{gr}(A_*)$. Using Proposition 1, we see that there exists a linear operator $C_*: H^{-1}(\Omega) \to H_0^1(\Omega)$ such that

$$\forall f \in H^{-1}(\Omega) \quad y_{\varepsilon} = \mathbf{A}_{\varepsilon}^{-1} R_{\varepsilon}^{+} P_{\varepsilon}^{*} f \longrightarrow C_{*} f \text{ weakly in } H_{0}^{1}(\Omega).$$

Then by analogy with [9] (see Proposition 1.7) it can be proved that there is a constant $\alpha > 0$ such that the inequalities

$$||f - g||_{H^{-1}}^2 \le \alpha ||C_* f - C_* g||_{H_0^1}^2, \tag{7}$$

$$\langle f - g, C_* f - C_* g \rangle \ge \alpha^{-1} \| C_* f - C_* g \|_{H_0^1}^2.$$
 (8)

hold for every $f,g\in H^{-1}(\Omega)$.

Therefore from (7)-(8) we deduce that for any $f \in H^{-1}(\Omega)$

$$||f||_{H^{-1}}^{2} \leq \alpha ||C_{*}f||_{H_{0}^{1}}^{2}, \quad \langle f, C_{*}f \rangle \geq \alpha^{-1} ||C_{*}f||_{H_{0}^{1}}^{2}. \tag{9}$$

Consequently the operator C_* is invertible, i.e. we may set $A_* = C_*^{-1}$. Moreover, we obtain for the operator A_* the properties of boundedness and coerciveness taking arbitrary $y \in H_0^1(\Omega)$ and substituting $f = A_*y$ into (9). The theorem is proved.

THEOREM 2. Suppose that the following conditions hold true:

- (i) $\left\{\mathbf{A}_{\epsilon} \in L\left(H_0^1(\Omega), H^{-1}(\Omega)\right)\right\}_{\epsilon \in (0,\epsilon_0]}$ is a sequence of uniformly coercive and uniformly bounded operators;
- (ii) for the original control object (3) there exists a coordinated collection of Banach spaces $\{Y_{\varepsilon}\}_{\varepsilon \in (0,\varepsilon_0]}$;
- (iii) there are an index set $H \in \mathbf{H}$ and a τ -converging sequence $\left\{ \left(\widehat{f}_{\varepsilon}, y_{\varepsilon} \right) \in \widehat{Q}_{\varepsilon} \times H^1_0(\Omega) \right\}_{\varepsilon \in H}$ such that

$$\mathbf{A}_{\varepsilon}y_{\varepsilon} = R_{\varepsilon}^{+}P_{\varepsilon}^{*}\widehat{f}_{\varepsilon}$$
, for every $\varepsilon \in H$.

Then there exist a set $H \in \mathbf{H}^{\sharp}$, and a coercive bounded linear operator $\mathbf{A}_{*} \in L\left(H_{0}^{1}(\Omega), H^{-1}(\Omega)\right)$ such that $\mathbf{A}_{\varepsilon} \xrightarrow{G^{*}} \mathbf{A}_{*}$ and

$$\tau - \operatorname{Lm}\left[\operatorname{Gr}\left(\mathbf{A}_{\varepsilon}\right) \Big|_{\widehat{Q}_{\varepsilon} \times H_{0}^{1}(\Omega)}\right] = \operatorname{gr}\left(\mathbf{A}_{\star}\right) \Big|_{\left(s_{H^{-1}}\right) - \operatorname{Lm}\left[\widehat{Q}_{\varepsilon}\right] \times H_{0}^{1}(\Omega)}. \tag{10}$$

To prove this theorem we first make use the following result (see [10]).

LEMMA 3. Let X, Y be Banach spaces, η be the product topology for $X \times Y$. Let $\{W_{\varepsilon}\}$ and $\{R_{\varepsilon}\}$ be some sequences of η -closed convex subsets of $X \times Y$ for which the following conditions hold:

- (a) $\Pi_{Y}W_{\varepsilon} = Y$ for every $\varepsilon \in (0, \varepsilon_{0}]$, where by $\Pi_{Y}: X \times Y \to Y$ denote the projection operator;
- (b) the sets R_{ε} have representation $R_{\varepsilon} = X \times C_{\varepsilon}$ for every $\varepsilon \in (0, \varepsilon_0]$;
- (c) there exist topological limits $\eta \operatorname{Lm} W_{\varepsilon}$ and $\eta \operatorname{Lm} R_{\varepsilon}$;
- (d) η -Li $(W_{\varepsilon} \cap R_{\varepsilon}) \neq \emptyset$.

Then for the sequence of subsets $\{W_{\varepsilon} \cap R_{\varepsilon}\}_{\varepsilon \in (0,\varepsilon_0]}$ there exists a topological limit in the η -topology such that

$$\eta - \mathrm{Lm} \; (W_{\varepsilon} \cap R_{\varepsilon}) = \eta - \mathrm{Lm} \, W_{\varepsilon} \cap \eta - \mathrm{Lm} \, R_{\varepsilon}.$$

Proof. In accordance with Lemma 3 we need verify conditions (a)–(d) for the sets $W_{\varepsilon}=\operatorname{Gr}(\mathbf{A}_{\varepsilon})$ and $R_{\varepsilon}=\widehat{Q}_{\varepsilon}\times H_0^1(\Omega)$, where $\widehat{Q}_{\varepsilon}$ are defined in Definition 2. Conditions (a)–(b) follow immediately from initial assumptions. Since the sequence of operators $\{\mathbf{A}_{\varepsilon}\}_{\varepsilon\in(0,\varepsilon_0]}$ is compact with respect to G^* -convergence and the strong topology for $H^{-1}(\Omega)$ has a countable base, by the Kuratowski compactness theorem [11] there exist an index subset $H\in\mathbf{H}^\sharp$, a set $\emptyset\neq Q\subseteq H^{-1}(\Omega)$, and a coercive bounded operator $\mathbf{A}_*\in L\left(H_0^1(\Omega),H^{-1}(\Omega)\right)$ such that

$$\begin{split} \tau - \mathrm{Lm} \, \mathrm{Gr} \left(\mathbf{A}_{\,\varepsilon} \right) &= \mathrm{gr} \left(\mathbf{A}_{\,\star} \right), \varepsilon \in H; \\ \tau - \mathrm{Lm} \, \left[\widehat{Q}_{\,\varepsilon} \times H^1_0(\Omega) \right] &= \left[\left(s_{_{H^{-1}}} \right) - \mathrm{Lm} \, \widehat{Q}_{\,\varepsilon} \times H^1_0(\Omega) \right]. \end{split}$$

Therefore condition (c) of Lemma 3 holds. Finally, condition (d) follows immediately from supposition (iii). Hence, by Lemma 3 we have

$$\begin{split} \tau - \mathrm{Lm} \, \left[\mathrm{Gr} \left(\mathbf{A}_{\, \varepsilon} \right) \, \middle|_{\, \widehat{Q}_{\, \varepsilon} \, \times \, H_0^1(\Omega)} \, \right] &= \tau - \mathrm{Lm} \, \left(\mathrm{Gr} \left(\mathbf{A}_{\, \varepsilon} \right) \cap \left[\widehat{Q}_{\, \varepsilon} \, \times \, H_0^1(\Omega) \right] \right) \\ &= \tau - \mathrm{Lm} \, \left[\mathrm{Gr} \left(\mathbf{A}_{\, \varepsilon} \right) \right] \cap \left[\left(s_{_{H^{-1}}} \right) - \mathrm{Lm} \, \widehat{Q}_{\, \varepsilon} \, \times \, H_0^1(\Omega) \right]. \end{split}$$

This implies immediately (10).

Now, turning to the original homogenization problem, we introduce the following assumption (in addition to suppositions (1)-(5)):

(6) there exist linear mappings $J_{\varepsilon}: L^2(\Omega) \to L^2(\Omega)$ and a family of closed subsets $\left\{\widehat{U}_{\varepsilon}\right\}_{\varepsilon \in (0,\varepsilon_0]} \subseteq L^2(\Omega)$ such that

$$U_{\,arepsilon} = \left\{ u \in L^2(\Omega) \; \middle| \; u = J_{\,arepsilon} v, \, v \in \widehat{U}_{\,arepsilon} \,
ight\} \; \; ext{for every} \; \, arepsilon \in (0, arepsilon_0];$$

- (7) there exists an invertible linear operator $J_0:L^2(\Omega)\to L^2(\Omega)$ such that $J_\varepsilon \longrightarrow J_0$ in the weak operator topology, i.e. $\langle u,J_\varepsilon v\rangle_{_{L^2}} \longrightarrow \langle u,J_0 v\rangle_{_{L^2}}$ for every $u,v,\in L^2(\Omega)$, and the following inclusion holds $(w_{_{L^2}})-\mathrm{Ls}\,\widehat{U}_\varepsilon\subseteq J_0^{-1}\left[(w_{_{L^2}})-\mathrm{Lm}\,U_\varepsilon\right]$, where by $(w_{_{L^2}})-\mathrm{Ls}\,\widehat{U}_\varepsilon$ is denoted the upper topological limit of the sequence $\left\{\widehat{U}_\varepsilon\right\}$;
- (8) for every control sequence $\{u_{\varepsilon} \in U_{\varepsilon}\}_{\varepsilon \in (0,\varepsilon_0]}$ weakly converging in $L^2(\Omega)$ there can be found a sequence of prototypes $\{v_{\varepsilon} \in \widehat{U}_{\varepsilon}\}_{\varepsilon \in (0,\varepsilon_0]}$ satisfying the conditions: $u_{\varepsilon} = J_{\varepsilon}v_{\varepsilon}$ for every $\varepsilon \in (0,\varepsilon_0]$ and $u_{\varepsilon} \longrightarrow u = J_0v$ weakly in $L^2(\Omega)$, where $v \in L^2(\Omega)$ is the weak limit of $\{v_{\varepsilon} \in \widehat{U}_{\varepsilon}\}_{\varepsilon \in (0,\varepsilon_0]}$;
- (9) for control object (3) hypotheses (A1)-(A4) hold true;
- (10) for every $\varepsilon \in (0, \varepsilon_0]$ there exist a linear continuous operator $\widehat{\mathbf{B}}_{\varepsilon}$ from $L^2(\Omega)$ into $H^{-1}(\Omega)$ and an element $\widehat{f}_{\varepsilon} \in H^{-1}(\Omega)$ such that:

$$\begin{split} R_{\varepsilon}^{+}P_{\varepsilon}^{\,*}\left(\widehat{\mathbf{B}}_{\,\varepsilon}v+\widehat{f}_{\varepsilon}\right) &= b_{\,\varepsilon}J_{\,\varepsilon}v+f_{\,\varepsilon} \ \text{for every} \ v\in\widehat{U}_{\,\varepsilon}; \\ \widehat{f}_{\,\varepsilon} &\to \widehat{f}_{\,0} \ \text{strongly in} \ H^{-1}(\Omega); \\ \widehat{\mathbf{B}}_{\,\varepsilon} &\longrightarrow \widehat{\mathbf{B}}_{\,0} \in L\left(L^{2}(\Omega); H^{-1}(\Omega)\right) \ \text{in the uniform operator topology,} \\ \text{i.e.} \quad \lim_{\varepsilon \to 0} \left\|\widehat{\mathbf{B}}_{\,\varepsilon} - \widehat{\mathbf{B}}_{\,0}\right\|_{L(L^{2}(\Omega); \, H^{-1}(\Omega))} = 0 \,. \end{split}$$

We begin with the following result.

LEMMA 4. If assumptions (1)-(10) hold true, then

$$\emptyset \neq \left(s_{H^{-1}}\right) - \operatorname{Lm} \widehat{Q}_{\varepsilon} = \left\{g \in H^{-1}(\Omega) \mid g = \widehat{\mathbf{B}}_{0} J_{0}^{-1} u + \widehat{f}_{0} \, \forall \, u \in (w_{L^{2}}) - \operatorname{Lm} U_{\varepsilon}\right\}, \tag{11}$$

where \widehat{f}_0 is a limit of $\{\widehat{f}_{\varepsilon}\}$ in the strong topology of $H^{-1}(\Omega)$ and $\widehat{Q}_{\varepsilon}$ are the convex closed subsets which are defined by the rule

$$\widehat{Q}_{\varepsilon} = \left\{ g \in H^{-1}(\Omega) \mid g = \widehat{\mathbf{B}}_{\varepsilon} v + \widehat{f}_{\varepsilon} \ \forall \, v \in \widehat{U}_{\varepsilon} \right\}. \tag{12}$$

Proof. Let $g^* = \widehat{\mathbf{B}}_0 J_0^{-1} u^* + \widehat{f}_0$ be any element of the set

$$\left\{g\in H^{-1}(\Omega)\ \middle|\ g=\widehat{\mathbf{B}}_{\,0}J_{\,0}^{-1}u+\widehat{f}_{\,0}\ \forall\,u\in(w_{_{L^{2}}})-\mathrm{Lm}\,U_{\,\varepsilon}\,\right\}.$$

Then since $u^* \in (w_{_{L^2}})-\operatorname{Lm} U_{\varepsilon}$, it follows that there exist an index set $H \in \mathbf{H}$, a sequence $\{u^*_{\varepsilon}\}_{\varepsilon \in H}$ converging to u^* in the weak topology of $L^2(\Omega)$, and a sequence of prototypes $\{v^*_{\varepsilon}\}_{\varepsilon \in H}$ weakly converging to v^* in $L^2(\Omega)$ such that

$$u_{\,\varepsilon}^{\,*}=J_{\,\varepsilon}v_{\,\varepsilon}^{\,*}\in U_{\,\varepsilon},\quad v_{\,\varepsilon}^{\,*}\in \widehat{U}_{\,\varepsilon}\,\,\forall\,\varepsilon\in\,H\quad \text{ and } u^{\,*}=J_{\,0}v^{\,*}.$$

Therefore, by property (10), $\widehat{\mathbf{B}}_{\varepsilon}v_{\varepsilon}^* + \widehat{f}_{\varepsilon} \in \widehat{Q}_{\varepsilon}$ for every $\varepsilon \in H$. At the same time we have

$$\begin{aligned} \left\| \widehat{\mathbf{B}}_{\varepsilon} v_{\varepsilon}^{*} - \widehat{\mathbf{B}}_{0} v^{*} \right\| &\leq \left\| \left(\widehat{\mathbf{B}}_{\varepsilon} - \widehat{\mathbf{B}}_{0} \right) v_{\varepsilon}^{*} \right\| + \left\| \widehat{\mathbf{B}}_{0} \left(v_{\varepsilon}^{*} - v^{*} \right) \right\| \\ &\leq \left\| \widehat{\mathbf{B}}_{\varepsilon} - \widehat{\mathbf{B}}_{0} \right\| \cdot \left\| v_{\varepsilon}^{*} \right\| + \sup_{\left\| \phi \right\|_{H_{0}^{1}} = 1} \left\langle \widehat{\mathbf{B}}_{0}^{*} \phi, v_{\varepsilon}^{*} - v^{*} \right\rangle. \end{aligned}$$

Hence

$$\widehat{\mathbf{B}}_{\,\varepsilon}v_{\,\varepsilon}^{\,*}+\widehat{f}_{\,\varepsilon}\longrightarrow\widehat{\mathbf{B}}_{\,0}v^{\,*}+\widehat{f}_{\,0}=\widehat{\mathbf{B}}_{\,0}J_{\,0}^{-1}u^{\,*}+\widehat{f}_{\,0}\ \ \text{strongly in}\ \ H^{-1}(\Omega).$$

On the other hand, if H be any index set of \mathbf{H}^{\sharp} and $\left\{g_{\,\varepsilon}\in\widehat{Q}_{\,\varepsilon}\right\}_{\,\varepsilon\in H}$ is a sequence converging to g in the strong topology of $H^{-1}(\Omega)$, then there is a sequence of control prototypes $\left\{v_{\,\varepsilon}\in\widehat{U}_{\,\varepsilon}\right\}_{\,\varepsilon\in H}$ such that $g_{\,\varepsilon}=\widehat{\mathbf{B}}_{\,\varepsilon}v_{\,\varepsilon}+\widehat{f}_{\,\varepsilon}$ for every $\varepsilon\in H$. Since the sequence $\widehat{\mathbf{B}}_{\,\varepsilon}v_{\,\varepsilon}$ is bounded in $H^{-1}(\Omega)$ and the operators $\widehat{\mathbf{B}}_{\,\varepsilon}$ are compact with respect to the uniform operator topology, it follows the the sequence $\{v_{\,\varepsilon}\}_{\,\varepsilon\in H}$ is bounded as well. Hence we may assume that there is an element $v_{\,0}\in(w_{_{L^{\,2}}})$ -Ls $\widehat{U}_{\,\varepsilon}$ such that $v_{\,\varepsilon}\longrightarrow v_{\,0}$ weakly in $L^{2}(\Omega)$. Consequently,

$$\begin{array}{ll} g_{\,\varepsilon} = \widehat{\mathbf{B}}_{\,\varepsilon} v_{\,\varepsilon} + \widehat{f}_{\,\varepsilon} \in \widehat{Q}_{\,\varepsilon} & \text{for every } \varepsilon \in H; \\ g_{\,\varepsilon} \longrightarrow \widehat{\mathbf{B}}_{\,0} v_{\,0} + \widehat{f}_{\,0} = g_{\,0} & \text{strongly in } H^{-1}(\Omega). \end{array}$$

But by property (7) there can be found an element u_0 in (w_{L^2}) -Lm U_{ε} satisfying $v_0 = J_0^{-1}u_0$. Therefore $g_0 = \widehat{\mathbf{B}}_0J_0^{-1}u_0 + \widehat{f}_0$. Thus, by Lemma 1, we obtain the required.

Now we are in a position to state the main result of our paper.

THEOREM 3. Suppose that conditions (1)-(10) hold true and there is an index set $H \in \mathbf{H}$ and some μ -converging sequence of admissible pairs $\{(u_{\varepsilon}, y_{\varepsilon}) \in \Xi_{\varepsilon}\}_{{\varepsilon} \in H}$ for original control problem (1)-(2). Then for the sequence of sets of admissible pairs $\{\Xi_{\varepsilon}\}_{{\varepsilon} \in (0,{\varepsilon}_0]}$ there exists a topological limit in the μ -topology and one has the following representation

$$\mu - \operatorname{Lm}\Xi_{\varepsilon} = \mathbb{X},\tag{13}$$

where

$$\mathbb{X} = \left\{ (u,y) \in L^2(\Omega) \times H^1_0(\Omega) \, \middle| \, \begin{array}{l} \mathbf{A}_* y = \widehat{\mathbf{B}}_0 J_0^{-1} u + \widehat{f}_0 \, , \\ u \in (w_{_{L^2}}) - \mathrm{Lm} \ U_\varepsilon . \end{array} \right\},$$

where $\mathbf{A}_* \in L(H_0^1(\Omega); H^{-1}(\Omega))$ is the G^* -limit of the sequence of operators $\{\mathbf{A}_{\epsilon}\}$ in the sense of Definition 4.

Proof. First of all we note that by initial assumptions there is some sequence of admissible pair $\{(u_{\varepsilon},y_{\varepsilon})\in\Xi_{\varepsilon}\}_{\varepsilon\in H}$ such that $(u_{\varepsilon},y_{\varepsilon})\stackrel{\mu}{\longrightarrow} (u^{0},y^{0})$. However, by property (8) there can be found a sequence of control prototypes $\left\{v_{\epsilon} \in \widehat{U}_{\epsilon}\right\}_{\epsilon \in (0,\epsilon_0]}$ the conditions: $u_{\varepsilon} = J_{\varepsilon}v_{\varepsilon}$ for every $\varepsilon \in (0, \varepsilon_0]$ and $u_{\varepsilon} \longrightarrow u^0 = J_0v^0$ weakly in $L^2(\Omega)$, where $v^0 \in L^2(\Omega)$ is the weak limit of $\left\{v_{\,\varepsilon} \in \widehat{U}_{\,\varepsilon}\right\}_{\,\varepsilon \in (0,\varepsilon_0]}$. Therefore in view of condition (10) instead of the original sequence of admissible pairs we may consider the sequence of their prototypes $\{(v_{\epsilon}, y_{\epsilon}) \in \widehat{\Xi}_{\epsilon}\}_{\epsilon \in H}$, where the sets $\widehat{\Xi}_{\epsilon}$ are defined by the rule

$$\widehat{\Xi}_{\,arepsilon} = \left\{ (v,y) \in L^2(\Omega) imes H^1_0(\Omega) \; \middle| egin{array}{l} \mathbf{A}_{\,arepsilon} y = R^+_{\,arepsilon} P^{\,st}_{\,arepsilon} \left(\widehat{\mathbf{B}}_{\,arepsilon} v + \widehat{f}_{\,arepsilon}
ight), \ v \in \widehat{U}_{\,arepsilon}. \end{array}
ight\}$$

Consequently, by Lemma 4 and condition (8), we have

$$\widehat{Q}_{\varepsilon}\ni\widehat{\mathbf{B}}_{\varepsilon}v_{\varepsilon}+\widehat{f}_{\varepsilon}\longrightarrow\widehat{\mathbf{B}}_{0}J_{0}^{-1}u^{0}+\widehat{f}_{0}\in\left(s_{w-1}\right)-\operatorname{Lm}\widehat{Q}_{\varepsilon}\quad\text{ strongly in }H^{-1}(\Omega),$$

i.e. all suppositions on Theorem 2 hold true. Therefore for the topological limit of prototype graph restrictions $\left[\operatorname{Gr}\left(\mathbf{A}_{\epsilon}\right)\Big|_{\widehat{Q}_{\epsilon}\times H_{0}^{1}(\Omega)}\right]$ representation (10) holds. Let $(\widehat{u}^{*},\widehat{y}^{*})$ be any pair of \mathbb{X} . Then, by Lemma 4, we have

$$\widehat{g}^* = \widehat{\mathbf{B}}_0 J_0^{-1} \widehat{u}^* + \widehat{f}_0 \in (s_{n-1}) - \operatorname{Lm} \widehat{Q}_{\varepsilon},$$

where the sets $\widehat{Q}_{\varepsilon}$ are defined in (12). Using Theorem 2 we deduce that

$$(\widehat{g}^{\,*},\widehat{y}^{\,*})\in\operatorname{gr}\left(\mathbf{A}_{\,*}\right)\cap\left[\left(s_{_{H^{-1}}}\right)-\operatorname{Lm}\widehat{Q}_{\,\varepsilon}\times H^1_0(\Omega)\right].$$

Here A_* is the G^* -limit of the operators sequence $\{A_{\epsilon}\}_{\epsilon \in (0,\epsilon_0]}$. Then in accordance with Theorem 2 we obtain

$$\begin{split} (\widehat{g}^{\, *}, \widehat{y}^{\, *}) \in & \quad \tau - \mathrm{Lm} \, \mathrm{Gr} \, (\mathbf{A}_{\, \epsilon}) \cap \left[\left(s_{_{H^{-1}}} \right) - \mathrm{Lm} \, \widehat{Q}_{\, \, \epsilon} \times H^1_0(\Omega) \right] \\ = & \quad \tau - \mathrm{Lm} \, \left[\mathrm{Gr} \, (\mathbf{A}_{\, \epsilon}) \, \Big|_{\widehat{Q}_{\, \epsilon} \times H^1_0(\Omega)} \right]. \end{split}$$

Therefore, by properties of topological limits (see Lemma 1), there exist an index set $H \in \mathbf{H}$, and sequences $\left\{\widehat{y}_{\,\varepsilon}\right\}_{\,\varepsilon \in \,H}$, $\left\{\widehat{u}_{\,\varepsilon}\right\}_{\,\varepsilon \in \,H}$, and $\left\{\widehat{v}_{\,\varepsilon}\right\}_{\,\varepsilon \in \,H}$ such that

$$\begin{split} \widehat{y}_{\varepsilon} &\longrightarrow \widehat{y}^{*} & \text{weakly in} & H_{0}^{1}(\Omega)\,, \\ \widehat{U}_{\varepsilon} \ni \widehat{v}_{\varepsilon} &\longrightarrow \widehat{v}^{*} & \text{weakly in} & L^{2}(\Omega)\,, \\ U_{\varepsilon} \ni J_{\varepsilon}\widehat{v}_{\varepsilon} &= \widehat{u}_{\varepsilon} &\longrightarrow \widehat{u}^{*} &= J_{0}\widehat{v}^{*} & \text{weakly in} & L^{2}(\Omega)\,, \\ \widehat{Q}_{\varepsilon} \ni \widehat{g}_{\varepsilon} &= \widehat{\mathbf{B}}_{\varepsilon}\widehat{v}_{\varepsilon} + \widehat{f}_{\varepsilon} &\longrightarrow \widehat{\mathbf{B}}_{0}J_{0}^{-1}\widehat{u}^{*} + \widehat{f}_{0} &= \widehat{g}^{*} & \text{strongly in} & H^{-1}(\Omega)\,, \\ \mathbf{A}_{\varepsilon}\widehat{y}_{\varepsilon} &= R_{\varepsilon}^{+}P_{\varepsilon}^{*}\widehat{g}_{\varepsilon} &= b_{\varepsilon}\widehat{u}_{\varepsilon} + f_{\varepsilon} & \text{for every} & \varepsilon \in H. \end{split}$$

Thus for the pair $(\widehat{u}^*, \widehat{y}^*)$ we have found the insex set $H \in \mathbf{H}$ and constructed the sequence $\{(\widehat{u}_{\varepsilon}, \widehat{y}_{\varepsilon})\}_{\varepsilon \in H}$ such that

$$(\widehat{u}_{\,\varepsilon},\widehat{y}_{\,\varepsilon}) \, \stackrel{\mu}{\longrightarrow} \, (\widehat{u}^{\,*},\widehat{y}^{\,*}) \ \ \text{and} \ \ (\widehat{u}_{\,\varepsilon},\widehat{y}_{\,\varepsilon}) \in \Xi_{\,\varepsilon} \ \ \text{for every} \ \varepsilon \in \, H,$$

i.e. condition (i) of Lemma 1 holds.

Now we consider any index set H of \mathbf{H}^{\sharp} . Let $\{(\widehat{u}_{\varepsilon},\widehat{y}_{\varepsilon})\}_{\varepsilon\in H}$ be a sequence μ -converging to some pair (u,y) such that $(\widehat{u}_{\varepsilon},\widehat{y}_{\varepsilon})\in\Xi_{\varepsilon}$ for every $\varepsilon\in H$. We have to show that $(u,y)\in\mathbb{X}$. Indeed, in this case there can be found a sequence of prototypes $\{\widehat{v}_{\varepsilon}\}_{\varepsilon\in H}$ weakly converging to v in $L^2(\Omega)$ such that

$$\widehat{u}_{\,arepsilon} = J_{\,arepsilon} \widehat{v}_{\,arepsilon} \in U_{\,arepsilon}, \quad \widehat{v}_{\,arepsilon} \in \widehat{U}_{\,arepsilon} \,\, orall \, arepsilon \in H \quad ext{ and } \,\, u = J_{\,0} v.$$

Consequently,

$$\widehat{g}_{\varepsilon} = \widehat{\mathbf{B}}_{\varepsilon} \widehat{v}_{\varepsilon} + \widehat{f}_{\varepsilon} \longrightarrow \widehat{\mathbf{B}}_{0} J_{0}^{-1} u + \widehat{f}_{0} = \widehat{g}_{0}$$
 strongly in $H^{-1}(\Omega)$,
$$\widehat{y}_{\varepsilon} = \mathbf{A}_{\varepsilon}^{-1} R_{\varepsilon}^{+} P_{\varepsilon}^{*} \widehat{g}_{\varepsilon} \longrightarrow y$$
 weakly in $H_{0}^{-1}(\Omega)$,

and by virtue of Theorem 2 we have

$$\left(\widehat{g}_{\,0},y\right)\in\operatorname{gr}\left(\mathbf{A}_{\,\star}\right)\left|_{\left(s_{H^{-1}}\right)-\operatorname{Lm}\widehat{Q}_{\,\epsilon}\times H^{1}_{0}\left(\Omega\right)}\right..$$

Therefore $y = \mathbf{A}_{*}^{-1} \widehat{g}_{0} = \mathbf{A}_{*}^{-1} \left(\widehat{\mathbf{B}}_{0} J_{0}^{-1} u + \widehat{f}_{0} \right)$, i.e. we have the following inclusion $(u,y) \in \mathbb{X}$.

Thus, using Lemma 1, we deduce that the set X is the topological limit of the sequence of sets of admissible pairs $\{\Xi_{\varepsilon}\}_{{\varepsilon}\in(0,{\varepsilon}_0]}$. The proof is complete.

We have proved that under initial assumptions (1)-(10) there exists the homogenized control object for (1)-(2) and this one can be presented in the following form:

$$\begin{split} \mathbf{A}_* y &= \widehat{\mathbf{B}}_0 J_0^{-1} u + \widehat{f}_0 \quad \text{ in } \quad D'(\Omega), \\ u &\in \left(w_{_{L^2}}\right) - \mathrm{Lm} \ U_{\varepsilon}. \end{split}$$

In conclusion we give the example which shows that in the general case the G^* -limit A_* of the operators $\{A_{\varepsilon}\}$ may not coincide with G-limit A_0 of such a sequence.

Let Ω be an open bounded domain of R^n , and let $\{\Omega_{\varepsilon}\}_{{\varepsilon}\in(0,{\varepsilon}_0]}$ be a sequence of open domains of R^n which are contained in Ω . Let $\{{\bf A}_{\varepsilon}\}_{{\varepsilon}\in(0,{\varepsilon}_0]}$ be a sequence of linear uniformly coercive and uniformly bounded operators from $H^1_0(\Omega)$ into $H^{-1}(\Omega)$. For every ${\varepsilon}\in(0,{\varepsilon}_0]$ we put

- (i) L^{ϵ} be the closure in $H^{-1}(\Omega)$ of the set of all functions $f \in C^{\infty}(\Omega)$ with supp f contained in Ω_{ϵ} ;
- (ii) $Y_{\varepsilon} = H_0^1(\Omega_{\varepsilon});$
- (iii) $P_{\epsilon}: H^1_0(\Omega_{\epsilon}) \to H^1_0(\Omega)$ be the extention operator defined for every $y \in H^1_0(\Omega_{\epsilon})$ by $(P_{\epsilon}y)|_{\Omega_{\epsilon}} = y$, $(P_{\epsilon}y)|_{\Omega \setminus \Omega_{\epsilon}} = 0$. Since P_{ϵ} is linear continuous operator, the conjugate operator $P_{\epsilon}^*: H^{-1}(\Omega) \to H^{-1}(\Omega_{\epsilon})$ is defined;
- (iv) $R_{\varepsilon}^+: H^{-1}(\Omega_{\varepsilon}) \to (L^{\varepsilon} \subset H^{-1}(\Omega))$ be the extention operator defined for every $f \in H^{-1}(\Omega_{\varepsilon})$ by $(R_{\varepsilon}^+ f)|_{\Omega_{\varepsilon}} = f$, $(R_{\varepsilon}^+ y)|_{\Omega \setminus \Omega_{\varepsilon}} = 0$.

Assume that Kovalevsky's hypothesis holds: each of operators $\{\mathbf{A}_{\varepsilon}\}_{\varepsilon \in (0,\varepsilon_0]}$ has the following representation

$$\mathbf{A}_{\varepsilon}^{-1} = P_{\varepsilon} \Lambda_{\varepsilon}^{-1} P_{\varepsilon}^{*},$$

where $\Lambda_{\varepsilon} \in L\left(Y_{\varepsilon}; Y_{\varepsilon}^{*}\right)$ are some invertible operators and if $y \in C_{0}^{\infty}(\Omega)$ then there exist a constant $\nu > 0$ and a sequence $\{y_{\varepsilon} \in K_{\varepsilon}\}_{\varepsilon \in (0, \varepsilon_{0}]}$ such that $y_{\varepsilon} \to y$ weakly in $H_{0}^{1}(\Omega)$ and such that, for every closed cube $S \subset \Omega$,

$$\limsup_{arepsilon o 0} \int_{S} |
abla y_{\,arepsilon}|^2 \, dx \leq
u \int_{S} \left(|
abla y|^2 + y^2
ight) \, dx,$$

where by K_{ε} we denote the closure in $H^1_0(\Omega)$ of the set of all functions $y \in C^{\infty}(\Omega)$ with supp y contained in Ω_{ε} .

Then $\mathbf{A}_{\varepsilon} \xrightarrow{G^{\bullet}} \mathbf{A}_{*}$ if and only if

$$\mathbf{A}_{\varepsilon}^{-1}R_{\varepsilon}^{+}P_{\varepsilon}^{*}f = \left[P_{\varepsilon}\Lambda_{\varepsilon}^{-1}P_{\varepsilon}^{*}\right]R_{\varepsilon}^{+}P_{\varepsilon}^{*}f \equiv P_{\varepsilon}\Lambda_{\varepsilon}^{-1}P_{\varepsilon}^{*}f \longrightarrow \mathbf{A}_{*}^{-1}f \quad \text{weakly in} \quad H_{0}^{1}(\Omega)$$

for every $f \in H^{-1}(\Omega)$.

Therefore in view of Kovalevsky's theorem (see [11]) we deduce that for the G^* -limit operator A_* the following representation holds:

$$\mathbf{A}_* = \mathbf{A}_0 + F_{\mu},$$

where \mathbf{A}_0 is the G-limit of $\{\mathbf{A}_{\varepsilon}\}_{\varepsilon\in(0,\varepsilon_0]}$ in the usual sense, and the operator $F_{\mu}:H^1_0(\Omega)\to H^{-1}(\Omega)$ is defined by

$$\langle F_{\mu}y,z
angle =\int_{\Omega}\mu(x)yz\ dx.$$

REFERENCES

- Bakhvalov N. and Panasenko G., Homogenization: Averaging Processes in Periodic Media, Kluwer Academic Publishers, Dordrecht, 1990.
- Ciorenescu D. and Murat F., A strange term coming from nowhere, Topic in the Mathematical Modelling of Composite Materials. Collège de France (A. Cherkaev and R. Kohn, eds.), Birkhäuser, Boston, 1997, pp. 45-93.
- 3. Dal Maso G., An Introduction to Γ-Convergence, Birkhäuser, Boston, 1993.
- 4. Pankov A.A., G-Convergence and Homogenization of Nonlinear Partial Differential Operators, Kluver Acad. Publ., Dordrecht, 1997.
- Sanchez-Palensia E., Nonhomogeneous Media and Vibration Theory, Lecture Notes in Phys., Vol. 127, Springer-Verlag, New York, 1980.
- 6. Skrypnik I.V., Nonlinear Elliptic Boundary Value Problems, B.G. Teubner Verlages, Leipzig, 1986.
- 7. Zhikov V. and Kozkol S. and Oleinik O., Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1994.
- 8. Kuratowski K., Topology I, II, PWN, Warszawa, 1966.
- Kovalevsky A. A., G-convergence and homogenization of nonlinear elliptic operators in divergence form with variable domain, Russian Acad. Sci. Izv. Math. 44 (1995), no. 3, 431-460.
- 10. Kogut P. I. and Mizerny V. M., On homogenization of extremal problems for linear Gammerstain's operator equations, Problemy upravlenia i informatiki (2002) (to appear). (Russian)
- 11. Kovalevsky A. A., An effect of double homogenization for Dirichlet problems in variable domains of general structure, C. R. Acad. Sci., Paris, Ser. I, Math. 328 (1999), no. 12, 1151-1156.

ACAD. LAZARJAN STR., 1/9, 49010 DNIPROPETROVSK, UKRAINE E-mail address: evm@diit.dp.ua